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Beam dynamics in quadratically nonlinear waveguides with gain and losses
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A propagation of optical beams in active waveguides with quadratic nonlinearity is considered. It is shown that
gain in one harmonic can compensate losses in the other harmonic. As a result of this process, stationary beams
can be formed in the system. Exact solutions for stationary modes of a single waveguide are obtained, and their
stability is analyzed. A possibility of the Hopf bifurcation that results in emergence of stable periodic regimes
in a monomer is demonstrated. Stationary solutions are also found for a dimer with identical waveguides and a
dimer with parity-time symmetry. The stability analysis demonstrates that stable beams exist in a wide range of
the system parameters.
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I. INTRODUCTION

Media without inversion symmetry are characterized by
quadratic optical nonlinearity. When light at frequency ω

propagates in such media, it generates a wave at double
frequency. This process of second harmonic generation (SHG)
has been realized experimentally by using cw beams and
pulses, in bulk media and waveguides [1–3]. This effect is
used in many applications, such as frequency conversion and
amplification.

Recently it was suggested to use distributed (in transverse
directions) gain and losses to provide an additional control
of properties of optical systems, see reviews [4,5]. Systems
with parity-time (PT ) symmetry belong to this type, and now
they are actively studied [4,5]. The idea came from analysis
of non-Hermitian Hamiltonian systems in quantum mechan-
ics [6,7]. The main property of PT -symmetric systems is
their invariance with respect to consecutive transformations
r → −r and t → −t (together with complex conjugation).
Gain and losses in PT -symmetric systems are distributed in
a balanced way, such that these systems may support stable
stationary modes.

A basic PT -symmetric model that involves quadratic
(χ (2)) nonlinearity is studied in Ref. [8]. This model consists
of two χ (2) waveguides with linear coupling. One waveguide
has gain for both harmonics, while the other waveguide has
losses. Stationary nonlinear modes, their stability, and solitons
are analyzed in Refs. [8–10]. Also, related questions of wave
mixing in PT -symmetric quadratic media are considered in
Refs. [11–13].

A motivation of the present paper is to consider a model
alternative to that studied in Ref. [8]. Namely, we study two
waveguides, where each waveguide has gain in one harmonic
and losses in the other harmonic. We refer to these waveg-
uides as active waveguides. Even a single active waveguide
demonstrates interesting properties. Therefore, first we ana-
lyze stationary states and their stability in a single waveguide.
The amplitude and the propagation constant of stationary
states are fixed by the system parameters, which is typical
for dissipative systems. We identify the presence of the Hopf

bifurcation, when a stationary state becomes unstable, and
a periodic state emerges. Then we study a χ (2) dimer in a
PT -symmetric case and in a general setup. For a PT -
symmetric dimer, we find a family of stationary modes, pa-
rameterized by the total intensity. Also, exact solutions for
stationary modes in a symmetric χ (2) dimer are found. Nu-
merical simulations of dimers demonstrate also an existence
of periodic and chaotic regimes.

II. A SINGLE ACTIVE WAVEGUIDE

Let us consider a χ (2) waveguide with resonance atoms
pumped, for example, from a side at ω or 2ω. A pump
provides gain at corresponding frequency. This model in the
cw regime is described by the following equations [1,14,15]:

iuz − αu + u∗v + iγ u = 0,

ivz − βv + 1
2u2 − iδv = 0, (1)

where u and v are the envelopes of the fundamental wave
(FW) and the second harmonic (SH), respectively, and z is the
longitudinal coordinate that plays the role of the evolutional
variable. A star means complex conjugation. Positive (nega-
tive) γ and δ correspond to losses (gain) in the FW and gain
(losses) in SH.

Equations (1) are written in dimensionless form. A charac-
teristic length scale ls on z is defined as [1]

ls = n1c
3/2

ω1deff

(
ε0n2

4I1s

)1/2

, (2)

where ω1 is the frequency of FW, deff is the effective parameter
of the second-order nonlinearity [1], n1,2 ≡ n(ω1,2), n(ω) is
the refractive index, and I1s is the intensity scale of FW.
Parameter α = ls (k1 − k0) is a shift of wave number k1 from
some reference wave number k0, while β is related to the
phase mismatch �k = 2k1 − k2 as β = ls�k + 2α. By setting
k0 = k1, one can eliminate parameter α; however, we prefer
to treat Eqs. (1) in a more general form. Variables u and v are
scaled such that |u|2 and |v|2 are dimensionless intensities.
The intensity scale of SH is defined as I2s = 2I1s .
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Model (1) was considered previously, for example, in
Refs. [14] and [15] within the context of an amplifier. Namely,
the authors of Refs. [14] and [15] suggested to amplify the FW
by introducing gain in the SH. However, only a case with gain
in SH (positive γ and δ) has been considered, and analytical
solutions have not been presented in these works.

By changing the intensity of the external pump, one can
modify the gain parameter (δ when δ > 0, or γ when γ < 0).
Therefore, light propagation in model (1) can be controlled
optically. The aim of this section is to analyze the main proper-
ties of model (1) for different system parameters. In particular,
we demonstrate that this model behaves as a forced dissipative
oscillator and it has stationary, periodic, and infinitely growing
states.

A. Stationary solutions

In general, total intensity P = |u|2 + 2|v|2 is not con-
served:

Pz = −2(γ |u|2 − 2δ|v|2). (3)

However, when the right-hand side turns to zero, P is con-
stant. This can be realized when |u(z)| and |v(z)| are constant.
Also, when |u(z)| and |v(z)| are periodic, P can remain finite.
We show that both these cases are realized in the system.

We look for a solution in the form

u = Aeiμz, v = Be2iμz, (4)

where amplitude A and propagation constant μ are real pa-
rameters, while B is complex. Then, we get the following
solution:

A = ±
√

2γ δ(F 2 + 1), B = γ (F − i), (5)

where

μ = βγ − αδ

δ − 2γ
, F = β − 2α

δ − 2γ
.

This solution is valid, when γ δ > 0 and δ �= 2γ . In fact,
solution (4) represents a family of solutions, because if
[u(z), v(z)] is a solution, then [u(z) exp(iφ), v(z) exp(2iφ)]
is also a solution, where φ is an arbitrary constant phase. A
presence of stationary solutions with parameters that depend
only on the system parameters suggests an important applica-
tion of an active monomer as an amplitude filter or a limiter.

B. Stability of stationary solutions

Now we check the stability of stationary modes. For this
purpose, we substitute

u = [A + a(z)]eiμz, v = [B + b(z)]e2iμz (6)

into Eqs. (1) and obtain equations for small modulations a(z)
and b(z). Separating the real and imaginary parts of a(z) and
b(z), and representing them as ∼ exp(ηz), we get a linear set
of four algebraic equations for modulation components. This
set has a nontrivial solution when determinant D is zero:

D(η) ≡ η(η3 + s1η
2 + s2η + s3) = 0, (7)
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FIG. 1. Shaded regions correspond to regions of stability of
stationary mode (4). A solid (dashed) line corresponds to α = 0 and
β = 1 (β = 0.5). Labels Bj , j = 1, . . . , 4, indicate boundaries of
the stability regions.

where

s1 = 2(γ − δ),

s2 = δ[δ + (4γ + δ)F 2],

s3 = 2γ δ(2γ − δ)(F 2 + 1). (8)

Stationary solution (4) is stable when all roots of D(η) are
in the left half of the complex η plane. One root of D(η) is
always zero. The roots of D̃(η), where D(η) = ηD̃(η), have
negative real parts, when

s1 > 0, s3 > 0, and s1s2 > s3. (9)

Figure 1 shows the regions of stability of stationary
modes (4) in the (γ, δ) plane for α = 0 and two values of
β. The shaded regions in Fig. 1 correspond to the parameters
of stable modes. Double-shaded regions mean overlapping of
regions for β = 0.5 and β = 1. When β decreases, the region
in the first quadrant shrinks to zero while that in the third
quadrant does not depend on β (for α = 0).

Boundary B1 corresponds to the third condition in Eqs. (9).
At boundary B1 function D̃(η) has two pure imaginary (con-
jugate) roots, and therefore the supercritical Hopf bifurcation
occurs at these values of the parameters. Stationary mode (4)
becomes unstable, and a stable limit cycle emerges. This
means that near B1, outside the stability domain, the variation
of u(z) and v(z) is periodic.

However, this periodic dynamics becomes quickly unstable
for larger values of δ. This is due to merging of the stable and
unstable limit cycles. The physical meaning of this transition
is that energy cannot be utilized effectively in the FW due to
very high gain in the SH. In contrast, for small δ, the stable
limit cycle exists at γ well beyond B1.

Figure 2 shows the dependence of field intensities on
z. The following initial conditions u(0) = 1 and v(0) = 0
are used. For parameters inside the stability region, γ = 0.3
and δ = 0.1, the dynamics tends to the stationary mode [see
Fig. 2(a)]. When γ = 0.6 and δ = 0.1, the stationary state
is unstable and the dynamics is periodic [see Fig. 2(b)].
Figure 2(c) demonstrates a case when periodic oscillations
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FIG. 2. Variation of FW (solid lines) and SH (dashed lines) on
z. (a) Transition to a stationary state at γ = 0.3 and δ = 0.1, (b)
transition to a periodic state at γ = 0.6 and δ = 0.1, (c) an infinite
growth at γ = 0.3 and δ = 0.3, and (d) transition to a stationary state
at γ = −0.1 and δ = −0.3. Other parameters are α = 0 and β = 1.

become unstable. Parameter γ in Fig. 2(c) is the same as in
Fig. 2(a), but a larger value of gain δ results in an infinite
growth of both modes.

At boundary B2 (a segment on δ = 0 line), two roots of
D̃(η) are simultaneously zero. When γ > 0 and δ < 0 [in the
fourth quadrant of the (γ, δ) plane], solution (4) is not valid.
For these parameters, both FW and SH experience losses.
Therefore, asymptotically both |u| and |v| vanish to zero.

At boundary B3, only a single real root turns to zero. At
B4, δ = 2γ , all |u|, |v|, and μ diverge. Nevertheless, inside
the stability region, gain in the FW can compensate losses
in the SH, and high amplitudes of the SH can be realized.
A typical example of the dynamics in this region is shown
in Fig. 2(d). After a transition process, both modes tend to
stationary states. By changing parameters to boundary B4,
the amplitudes of modes increase, diverging on B4. Also, it
is necessary to remember that just near B4, one eigenvalue η

is small so that longer structures are necessary to achieve the
stationary regime. On the left side from B4, both modes grow
exponentially.

We also mention that additional care should be taken in
analysis of the cascading limit of Eqs. (1). In the conservative
model, γ = δ = 0, when the mismatch parameter β is large,
the first term in the equation for SH is ignored [16]. This
gives v = u2/(2β ). Substituting the last equation to the first of
Eqs. (1), we obtain for u the equation with cubic nonlinearity.
If we apply a similar procedure to Eqs. (1) with γ, δ �= 0, we
get

(|u|2)z + 2γ |u|2 − δ

β2 + δ2
|u|4 = 0. (10)

This equation predicts unstable (stable) stationary solutions
for the whole region where γ and δ are positive (negative).
This result contradicts the stability analysis, presented above.
The reason is that one cannot simply drop vz, because vz ∼ μ

can be large for large β.
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FIG. 3. The dependence of output on the gain parameter for L =
100, γ = 0.5, α = 0, and β = 1. The inset represents a magnified
view of the first peak.

C. Finite waveguides

Now we analyze a possibility to control the system prop-
erties by changing the gain parameter. The latter can be done
by varying the intensity of the external pump. We consider
a structure of finite length L, and we find the output fields,
solving Eqs. (1) numerically. The input is the same as in
Fig. 2. Figure 3 shows the dependence of the output as a
function of the gain parameter for L = 100 and γ = 0.5. This
dependence is represented by a sequence of peaks. The inset
in Fig. 3 shows the first peak. One can see that by varying the
gain parameter by ∼ 2%–3%, one can strongly modify the
output.

The analysis for different values of L, γ , and δ results
in the following findings. Typically, the first (on δ) peak, as
more narrow and higher, can be used for applications. An
increase of L at fixed γ results usually in a decrease of both
the peak position on δ and its amplitude. In contrast, when γ

increases at fixed L, the peak position shifts to the right and
its amplitude increases.

Let us estimate real values of the parameters. A typical
length of a crystal or a waveguide for SHG is 5 cm [2,3,17,18].
It follows from Fig. 2 that the transition to a stationary state
occurs at z ∼ 10–50, and therefore scale ls ∼ 1–5 mm. For
media with a nonlinear parameter deff ∼ 10−11 pm/V, such
ls can be achieved for Is ∼ 10–100 MW/cm2 [see Eq. (2)].
Such intensities are available from pulsed lasers [17,18].
For sufficiently long (micro- or nanoseconds) pulses and the
high repetition rate, the time-independent dynamics can be
realized. Materials such as KTP and LiNbO3 have the required
value of nonlinearity for a proper direction [1], while the
optical damage threshold is > 1–100 GW/cm2 (see, e.g.,
Ref. [17]). By changing the direction of the beam propagation,
one can tune the phase-matching parameter �k, and therefore
β. Values of losses of untreated crystals for SHG are of
order 1–10 m−1, which gives |γ |, |δ| ∼ 10−2–10−3 (see,
e.g., Ref. [18]). However, these parameters can be modified
by introducing resonance atoms, which provide additional
absorption, to a crystal. Therefore, effects discussed in this
work can be realized experimentally by using modern laser
sources and materials.

043854-3



E. N. TSOY, F. KH. ABDULLAEV, AND V. E. ESHNIYAZOV PHYSICAL REVIEW A 98, 043854 (2018)

III. A DIMER OF ACTIVE WAVEGUIDES

Now we consider two coupled χ (2) waveguides (a χ (2)

dimer). This system is described by the following set of
equations:

iun,z − αnun + u∗
nvn + iγnun = κuu3−n,

ivn,z − βnvn + 1

2
u2

n − iδnvn = κvv3−n, (11)

where κu (κv) is the coupling parameter for the FW (SH),
and n = 1 and 2. This system in the absence of gain and
losses (γn = δn = 0) was studied, for example, in Ref. [19].
A special type of PT -symmetric coupler with three-wave
interaction is presented in Ref. [11].

When γ1 = −γ2, δ1 = −δ2, and γ1δ1 < 0 (values in the
second and fourth quadrants of Fig. 1), the system is PT
symmetric, and it was studied in Ref. [8]. Here we study an
alternative PT -symmetric dimer, when γ1 = −γ2, δ1 = −δ2,
and γ1δ1 > 0 (values in the first and third quadrants). Also,
symmetric dimers and asymmetric dimers are analyzed.

A. A PT -symmetric dimer,
α1 = α2 = α, β1 = β2 = β, γ1 = −γ2 = γ , and δ1 = −δ2 = δ

First, let us consider a linear PT -symmetric system (11).
Looking for a solution in the form un = An exp(iμz) and
vn = Bn exp(2iμz), we arrive to a linear eigenvalue problem
for parameter μ. Then the linear eigenvalues have the follow-
ing form [8]:

μ1,2 = −α ±
√

κ2
u − γ 2,

μ3,4 = 1

2

( − β ±
√

κ2
v − δ2

)
. (12)

When |γ | > |κu| or |δ| > |κv|, a linear dimer has broken
PT symmetry [8]. Besides the PT -symmetry thresholds,
Eqs. (12) provide values of the propagation constant, from
which nonlinear stationary states bifurcate.

We look for stationary solutions in the following form:

u1 = Aeiμz, v1 = Be2iμz,

u2 = A∗eiμz, v2 = B∗e2iμz, (13)

where amplitudes of modes in different waveguides are taken
in PT -invariant form. Representing complex amplitude A

as A = |A| exp(iφ), one can express B and |A| as functions
of φ:

B = (μ + α − iγ )e2iφ + κu, (14)

and

|A|2 = 2 {(α + μ)(β + 2μ) + γ δ

+ κu[(β + 2μ + κv ) cos(2φ) + δ sin(2φ)]

+ κv[(α + μ) cos(4φ) + γ sin(4φ)]}. (15)

Phase φ is found from a single equation:

(β + 2μ)γ − (α + μ)δ

− κu[δ cos(2φ) − (β + 2μ + κv ) sin(2φ)]

− κv[γ cos(4φ) − (μ + α) sin(4φ)] = 0. (16)

Depending on the system parameters, Eq. (16) can have from
zero to four roots within one period of φ = [0, π ). However,
one should take only roots that give a positive value of |A|2 in
Eq. (15). When the absolute value of the free term in Eq. (16)
is large enough, there are no stationary states in the system. A
number of roots of Eq. (16) for a given set of parameters can
easily be checked numerically.

In contrast to an active monomer, stationary solution (13)
of the PT -symmetric dimer represents a family of solutions
parameterized by μ. We also mention that Eq. (16) can be
considered as an equation for μ at a given value of φ. By doing
this, one can find solutions explicitly for particular values of
μ. For example, when φ = jπ/4, where j = 0, . . . , 3, one
can solve Eq. (16) for μ, obtaining

μ = (κv − β )γ + (α ± κu)δ

2γ − δ
(17)

for φ = 0 and φ = π/2, respectively, and

μ = −(β + κv )γ + αδ ∓ (β + κv )κu

2γ − δ ± 2κu

(18)

for φ = π/4 and φ = 3π/4, respectively. Equations (17)
and (18) together with Eqs. (14) and (15) give explicit sta-
tionary solutions of the dimer.

Now we can analyze the stability of stationary solu-
tions (13). For this purpose we use

u1 = [A + a1(z)]eiμz, v1 = [B + b1(z)]e2iμz,

u2 = [A∗ + a2(z)]eiμz, v2 = [B∗ + b2(z)]e2iμz, (19)

where an(z) and bn(z) are small modulations. Substituting
these equations into Eqs. (11), introducing real and imagi-
nary parts of modulations an = anR + ianI and bn = bnR +
ibnI and representing them as anX = ãnX exp(ηz) and bnX =
b̃nX exp(ηz), where X = R and I , one arrives to the following
eigenvalue problem for η:

L(η) ψ = 0, where L(η) =
(

C+(η) C0

C0 C−(η)

)
, (20)

where C± and C0 are 4 × 4 matrices, defined as

C± =

⎛⎜⎜⎜⎝
−μ + BR − α ±BI ∓ γ − η AR ±AI

±BI ± γ + η −μ − BR − α ∓AI AR

AR ∓AI −β − 2μ ±δ − η

±AI AR ∓δ + η −β − 2μ

⎞⎟⎟⎟⎠ (21)
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FIG. 4. Stationary modes of a PT -symmetric dimer for (a) γ =
0.3, δ = 0.1, and κu = κv = 0.2; (b) γ = 0.3, δ = 0.1, and κu =
κv = 0.5; (c) γ = 0.6, δ = 0.1, and κu = κv = 0.5; and (d) γ =
0.3, δ = 0.3, and κu = κv = 0.5. Other parameters are α = 0 and
β = 1. Circles (crosses) correspond to stable (unstable) modes. Short
vertical lines are positions of eigenvalues in the linear limit.

and

C0 =
(−κuI2 0

0 −κvI2

)
, (22)

I2 is the 2 × 2 the identity matrix, and

ψ = (ã1R, ã1I , b̃1R, b̃1I , ã2R, ã2I , b̃2R, b̃2I )T . (23)

In Eq. (21), notations A = AR + iAI and B = BR + iBI are
used.

Eigenvalues are found as roots of the determinant of L(η).
A stable stationary state requires the real parts of all roots to
be negative. Modes of the PT -symmetric dimer can clearly be
represented in the (μ, P ) plane, where P = 2(|A|2 + 2|B|2)
for stationary states (13). Stationary modes for different sets
of parameters are shown in Fig. 4.

For parameters (γ = 0.3 and δ = 0.1) in Fig. 4(a) and in
the absence of coupling (κu = κv = 0), the first waveguide
has a stable stationary state (see Fig. 1), while the second
waveguide is in an unstable (growing) state. Parameters of
coupling (κu = κv = 0.2) in Fig. 4(a) are taken such that PT
symmetry is partially broken in the linear limit [see Eqs. (12)].
Nonlinear modes bifurcate from two eigenvalues of the linear
system. In contrast to the linear system, there are three modes
for a given P , when P � 8. For larger P , there are two modes,
one of which is stable.

Parameters in Fig. 4(b) correspond to a case when the
linear system has four eigenvalues and its PT symmetry is
unbroken. A nonlinear dimer can have up to six modes for
moderate values of P < 20. For high total intensity (P >

20), there are four modes for a given P . For low intensity
(P < 20), modes change their stability. For high intensity
(P > 20), modes that originate from μ2 and μ3 (μ1 and μ4)
become stable (unstable).

For parameters (γ = 0.6 and δ = 0.1) and in Fig. 4(c), in
the absence of coupling (κu = κv = 0), the first waveguide has
a stable periodic state while the second waveguide is in an

unstable (growing) state. For κu = κv = 0.5, PT symmetry is
partially broken in the linear limit. There are pure nonlinear
modes in region μ > 0 that emerge at finite total intensity.
Similarly to the previous case, there are up to six modes for
low P . For high intensity (P > 20), there are four modes, two
of which are stable.

The parameters in Fig. 4(d) correspond to a case, when
both waveguides, if decoupled, are in unstable states and the
PT symmetry of the linear system is unbroken. The region
where six modes exist is extended to higher P (P ∼ 50).
However, for high intensity P > 50, only four modes exist,
similarly to Figs. 4(b) and 4(c). Also, for high intensity,
modes that originate from μ2 and μ3 (μ1 and μ4) are stable
(unstable).

Typically, an instability in Fig. 4 means an infinite growth
of at least a pair of fields. We should also mention that besides
stable and unstable stationary states, there are periodic and
chaotic (with the finite total intensity) types of dynamics for
the same values of the system parameters. These regimes are
realized for different values of initial conditions.

In general, when γ δ > 0 and the coupling is ignored, at
least one waveguide in the PT -symmetric dimer is in the
unstable state. However, due to coupling, a stable stationary
state can formed even in two initially unstable waveguides, as
demonstrated in Fig. 4.

B. Symmetric and asymmetric dimers

Let us consider a dimer that consist of two identical
waveguides, α1 = α2 = α, β1 = β2 = β, γ1 = γ2 = γ , and
δ1 = δ2 = δ. We look for stationary solutions in the following
form:

un = Ane
iμz, vn = Bne

2iμz, (24)

where An is real. Then

A1 = ±
√

2γ δ(F 2 + 1), B1 = γ (F − i), (25)

where A2 = σA1, B2 = B1, σ = ±1, and [cf. Eqs. (5)
and (17)]

μ = (β + κv )γ − (α + σκu)δ

δ − 2γ
,

F = β − 2α − 2σκu + κv

δ − 2γ
. (26)

One can consider also a dimer with arbitrary values of γn

and δn. Such a dimer is different from a PT -symmetric dimer.
In a PT -symmetric dimer, when γnδn < 0, both subsystems
represent an unstable oscillator, while when (γnδn > 0) at
least one waveguide has an unstable stationary state. In con-
trast, an asymmetric dimer with γnδn > 0 can be represented
for certain parameters as a combination of two stable oscil-
lators. Therefore, various processes of synchronization and
chaotic behavior can arise in the system.

We find that in an asymmetric dimer for various values
of γn and δn, provided that at least one coefficient corre-
sponds to gain, there can be stationary or periodic states.
For example, let us consider a dimer with α1 = α2 = 0, β1 =
1, β2 = 0.5, γ1 = 0.3, δ1 = 0.1, γ2 = 0.2, and δ2 = 0.05. In
the absence of coupling, parameters of both waveguides
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FIG. 5. Dynamics of FW (a solid line) and SH (a dashed
line) in the first waveguide of the asymmetric dimer. (a) A peri-
odic state at κu = κv = 0.4, and (b) a chaotic state at κu = κv =
0.6. Other parameters are α1 = α2 = 0, β1 = 1, β2 = 0.5, γ1 =
0.3, δ1 = 0.1, γ2 = 0.2, and δ2 = 0.05.

correspond to stable stationary modes, cf. Fig. 1. At weak
coupling (κu = κv = [0.01,0.08]), the dimer demonstrates a
chaotic behavior. Then, at κu = κv = [0.09, 0.34], the dimer
is in a stable stationary state. At κu = κv = [0.35, 0.52] and
κu = κv = [0.92, 1.3], the dynamics is periodic, as shown in
Fig. 5(a). When κu = κv = [0.53, 0.91], the dynamics again
becomes chaotic, as presented in Fig. 5(b). It should be noted
that a particular realization of the chaotic dynamics depends
also on details of the numerical method, such as integration
scheme and accuracy. For strong coupling, κu = κv � 1.3, the
oscillators are locked, giving a constant amplitude motion.
A similar behavior is found for other values of the system
parameters; however, a sequence of regimes can differ from
that described above. When gain is large, the wave amplitudes
grow infinitely. Therefore, dimer (11) demonstrates a rich
variety of dynamics depending on the system parameters.

IV. CONCLUSION

In conclusion, we have studied the beam dynamics in a
monomer and a dimer of active waveguides with quadratic

nonlinearity. It has been found that a single χ (2) waveguide
with gain in one harmonic and losses in the other harmonic
acts as a forced dissipative oscillator. The monomer can
support stationary modes, as well as periodic oscillations. The
stability analysis of stationary modes of a monomer shows
that for particular parameters a transition to periodic regimes
is possible via the Hopf bifurcation.

It is demonstrated that the active monomer can be used
as an amplitude filter, or an optically controllable switch.
The variation of the gain parameter by an external pump
strongly affects the transmission properties of the system.
An estimate of parameters shows that these effects can be
observed in waveguides of a few centimeters long, and tens of
MW/cm2 intensities, using materials with moderate second-
order nonlinearity.

A set of coupled waveguides with gain and losses has
also been analyzed. An alternative configuration of a PT -
symmetric dimer has been suggested. Stationary states of a
dimer in PT -symmetric and symmetric configurations have
been obtained, and the stability of these states has been
studied. It has been shown that stationary states of the PT -
symmetric dimer can be found from a solution of a single
equation for the phase of the FW. Explicit solutions for partic-
ular values of the propagation constant μ have been obtained.
For moderate values of the total intensity, the number of
nonlinear modes of the dimer can be larger (up to six modes)
than that in the linear system. For larger values of P , the
number of modes is reduced to four, and at least two of them
are stable for a wide range of the system parameters.
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